Газовая сварка – вид сварки плавлением, при котором источником нагрева служит теплота, выделяемая в процессе горения смеси горючих газов.
Содержание
- 1 ГОСТы
- 2 Принцип работы
- 3 Оборудование
- 4 Характеристика и особенности газов
- 5 Ацетилен
- 6 Заменители ацетилена
- 7 Виды пламени и их использование
- 8 Окислительное
- 9 Восстановительное (нормальное)
- 10 С повышенным содержимым горючего газа
- 11 Характеристика методов газовой сварки
- 12 Правый
- 13 Левый
- 14 Характеристика технологий
- 15 Многослойная
- 16 Валиком
- 17 Ванночками
- 18 Окислительным пламенем
- 19 Преимущества и недостатки
Метод подходит для соединения почти всех металлов, используемых в технике. Применяется в промышленности, сельском хозяйстве, строительстве, при выполнении ремонтных работ.
ГОСТы
Вся информация, относящаяся к газовой сварке и применяемым материалам, изложена в ГОСТах, которые необходимо выполнять.
Некоторые стандарты:
- Термины и определения: ГОСТ Р ИСО 857-1-2009 – определение термина «газовая сварка.
- Сварочные материалы: ГОСТ 5457-75 – технические условия на ацетилен газообразный и растворенный технический, ГОСТ 3022-80 – технический водород.
- Газовая сварка и резка: ГОСТ 29090-91 – требования к материалам для газовой сварки.
Принцип работы
Сварка газом принадлежит к термическому классу. Энергоноситель – газ. Процесс работы заключается в нагревании кромок соединяемых деталей до их расплавления. Источник нагрева – высокотемпературное пламя сварочной горелки, образованное в результате сжигания смеси горючего газа с кислородом. Заполнение зазора между кромками выполняется металлом расплавленной присадочной проволоки или за счет расплавления материала кромок основного материала.

Оборудование
Сварочный пост (рабочее место сварщика) включает:
- кислородные баллоны (хранение запасов кислорода);
- редукторы кислородные, служащие для понижения давления кислорода, поступающего из баллона в горелку;
- ацетиленовые баллоны и редукторы или ацетиленовые генераторы для получения газа из карбида кальция;
- сварочные горелки с набором наконечников;
- шланги (резиновые рукава) для подачи газа и кислорода в горелку;
- принадлежности (очки со светофильтрами, набор ключей, молоток, щетки стальные для очистки материала и сварного шва);
- стол сварочный или приспособление для сборки, закрепления элементов;
- присадочную проволоку;
- при необходимости – сварочные порошки, флюсы.

Характеристика и особенности газов
Для нагрева металла необходима смесь горючих газов. Газовая сварка предполагает использование ацетилена или его заменителей в смеси с техническим чистым кислородом.
Ацетилен
Нагрев и расплавление металла при газовой сварке требует высокой температуры пламени, превышающей в 2 раза этот показатель металла, который сваривается.
Ацетилен по сравнению с другими газами образует наивысшую температуру пламени – 3050-3150° С, поэтому является основным при газовой сварке.
Ацетилен — соединение углерода с водородом. Бесцветный, с резким специфическим запахом горючий газ, взрывоопасный. Работа с газом требует осторожности и соблюдения мер техники безопасности.

Заменители ацетилена
Сварка металлов, имеющих температуру плавления ниже стали, может осуществляться с использованием газов–заменителей. Например: пропан, метан, водород.
Пропан – технический газ без цвета, имеет резкий запах, тяжелее воздуха. Для сварки используют пропан-бутановую смесь, содержащую 5-30% бутана. Температура пропан-кислородного пламени достигает 2400 °С.
Метан-кислородная смесь почти без запаха. Пламя имеет температуру 2100-2200 °С, поэтому такой горючий газ применяют ограниченно.
Водород – легкий горючий газ без запаха, бесцветный. В определенных пропорциях с кислородом и воздухом может образовать взрывоопасную смесь. Поэтому обязательно соблюдение правил безопасности при работе с газом. Водород для сварки находится в стальных баллонах зеленого цвета. Имеет газообразное состояние. Пламя водородно-кислородное имеет синий оттенок. Нечеткие очертания его зон затрудняют регулировку.
Виды пламени и их использование
Состав горючей смеси влияет на внешний вид и температуру сварочного пламени. Оно имеет 3 зоны: ядро, восстановительную (среднюю), факел-окислительную. Ядро включает механическую смесь нагретого до высокой температуры кислорода и разложенного ацетилена.
В зависимости от пропорции ацетилена и кислорода различают 3 вида пламени:
- окислительное;
- восстановительное;
- с повышенным содержанием горючего газа.
Окислительное
Пламя формируется при увеличении подачи в горелку кислорода или уменьшении количества ацетилена. На 1 объемную часть ацетилена должно приходиться 1.3 и более части кислорода. Характерные черты:
- Укороченное заостренное ядро бледной окраски с расплывчатыми очертаниями границ.
- Сокращение длины средней зоны и факела.
- Окраска пламени — синевато-фиолетовая.
- Горение происходит с шумом.
- Температура пламени превышает норму.
Этот тип пламени применяется для соединения низкоуглеродистой стали и сварки латуни.
Восстановительное (нормальное)
Соотношение ацетилена к кислороду может находиться в пределах от 1:1 до 1:1.3. В пламени происходит образование углерода и водорода, благодаря которым металл раскисляется и восстанавливается. В таких условиях формируется однородный металлический шов без газовых пузырей и пор.
Ядро пламени – светлое, восстановительная зона и факел имеют более темный оттенок. При увеличении давления кислорода ядро удлиняется. Факел имеет температуру намного ниже восстановительной зоны. Нормальное пламя используют для сваривания большинства видов металлов.
С повышенным содержимым горючего газа
Имеет название — науглероживающее или ацетиленистое пламя. Для него характерно увеличение подачи ацетилена или уменьшение кислорода. На 1 часть ацетилена берется 0.95 и менее части кислорода. Характерные признаки:
- увеличение размеров зоны сгорания;
- расплывчатость очертаний ядра, возникновение на его конце зеленого венчика;
- посветление восстановительной зоны почти до ее соединения с ядром;
- пожелтение пламени.
Результатом избытка ацетилена является его неполное сгорание, пламя коптит из-за недостатка кислорода. Излишек ацетилена разлагается на углерод и водород. В расплавленный металл переходит углерод. Результат — науглероживается металл шва.
Пламя с небольшим избытком горючего газа используют для сварки магниевых и алюминиевых сплавов, чугуна.
Характеристика методов газовой сварки
Существует 2 способа:
- правый;
- левый.
Правый
Это метод, при котором сварка выполняется слева направо. Направление:
- сварочного пламени – сваренный участок шва;
- присадочной проволоки – вслед за горелкой.
Мундштуком горелки совершаются небольшие поперечные колебания.
По сравнению с левым способом:
- производительность сварки на 20-25% выше;
- качество сварного шва лучше;
- расход газов меньше на 15-20%.
Рассеивание теплоты пламени меньше по сравнению с левым методом, в связи с чем угол раскрытия шва составляет 60-70°, что способствует уменьшению количества наплавляемого материала, расхода проволоки и снижению коробления изделия.
Способ целесообразен при соединении элементов, имеющих большую теплопроводность и деталей, толщина которых превышает 5 мм.
Левый
Способ заключается в передвижении:
- горелки справа налево;
- присадочной проволоки – перед пламенем, которое направлено на несваренную зону шва.
Кромки основного металла перед началом сварочных работ подогревают, что способствует хорошему перемешиванию сварочной ванны.
Левый способ применяют для соединения элементов из легкоплавких и тонких (до 3 мм) металлов.

Характеристика технологий
Различают разные техники наложения сварочных швов:
- многослойную;
- валиком;
- ванночками;
- окислительным пламенем.
Многослойная
Применение — выполнение ответственных соединений. Сварочные работы проводятся проходкой коротких участков. Условие — несовпадение стыков швов в отдельных слоях.
Перед наложением очередного слоя поверхность предыдущего очищается от шлаков и окалины с помощью проволочной щетки.
Преимущества способа по сравнению с однослойной сваркой:
- меньшая зона нагрева;
- обеспечение отжига нижерасположенных слоев;
- проковка каждого слоя.
Недостаток: большой расход газов.
Валиком
Соединяемые элементы устанавливают вертикально с зазором в полтолщины листа. Пламенем расплавляют кромки с одновременным образованием круглого отверстия. Его нижний участок на всю толщину металла заплавляют присадочным материалом. Пламя переносят выше, оплавляют кромку отверстия вверху, а на его нижнюю часть накладывают следующий слой материала. Этапы повторяют до окончания формирования сварочного шва.
Если металл имеет толщину 6-12 мм, работы одновременно проводятся с двух сторон двумя сварщиками.
Шов имеет форму сквозного валика, который соединяет детали. Металл шва – плотный, не имеет дефектов.
Ванночками
Метод применяется при сварке низколегированной и низкоуглеродистой стали до 3 мм толщиной, когда требуется получение угловых соединений и встык. Используется присадочная проволока.
В момент образования на шве ванночки диаметром 4-5 мм в нее направляют конец проволоки, расплавляют ее небольшой участок, после чего перемещают в восстановительную зону пламени. Одновременно мундштуком совершают круговое движение для перехода в рядом расположенную на шве зону новой ванночки. Она должна перекрывать на 1/3 диаметра предыдущую ванночку.
Чтобы избежать окисления, конец проволоки удерживать в восстановительной зоне. Нельзя допускать погружения ядра в ванночку с целью недопущения науглероживания металла шва.
Окислительным пламенем
Метод используется для сварки низкоуглеродистой стали. Цель – повышение производительности сварочного процесса на 10-15%.
Состав пламени β = 1.4. Избыток кислорода при сварке сталей способствует окислению металла шва, поэтому он получается хрупким и имеет поры. Поэтому при работе с целью раскисления окислов железа в сварочной ванне используют присадочные проволоки с повышенным составом кремния и марганца. Например: Св 08Г, Св 08Г2С, Св-12ГС.
Преимущества и недостатки
К положительным качествам газовой сварки относятся:
- простота;
- недорогое оборудование;
- возможность регулирования скорости нагрева и охлаждения свариваемого металла;
- прочные и плотные сварные швы.
Недостатки:
- снижение производительности процесса при увеличении толщины свариваемого материала;
- обширная зона нагрева;
- высокая стоимость горючего газа по сравнению с электроэнергией;
- сложности механизации и автоматизации процесса.